On sequences with prescribed metric discrepancy behavior
نویسندگان
چکیده
منابع مشابه
Metric discrepancy results for sequences {nkx} and diophantine equations
We establish a law of the iterated logarithm for the discrepancy of sequences (nkx) mod 1 where (nk) is a sequence of integers satisfying a sub-Hadamard growth condition and such that one and four-term Diophantine equations in the variables nk do not have too many solutions. The conditions are discussed, the probabilistic details of the proof are given elsewhere. As a corollary to our results, ...
متن کاملOn Atanassov's methods for discrepancy bounds of low-discrepancy sequences
The aim of this survey paper is to give an updated overview of results on low discrepancy sequences obtained via Atanassov’s methods. These methods first initiated for Halton sequences have been later on extended to generalizations of these sequences and to (t, s)sequences, the other well known family of low discrepancy sequences, including polynomial arithmetic analogues of Halton sequences.
متن کاملDiscrepancy of Point Sequences on Fractal
We consider asymptotic bounds for the discrepancy of point sets on a class of fractal sets. By a method of R. Alexander, we prove that for a wide class of fractals, the L 2-discrepancy (and consequently also the worst-case discrepancy) of an N-point set with respect to halfspaces is at least of the order N ?1=2?1=2s , where s is the Hausdorr dimension of the fractal. We also show that for many ...
متن کاملOn the discrepancy of Markov-normal sequences
© Université Bordeaux 1, 1996, tous droits réservés. L’accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier do...
متن کاملDiscrete Low-Discrepancy Sequences
Holroyd and Propp used Hall’s marriage theorem to show that, given a probability distribution π on a finite set S, there exists an infinite sequence s1, s2, . . . in S such that for all integers k ≥ 1 and all s in S, the number of i in [1, k] with si = s differs from k π(s) by at most 1. We prove a generalization of this result using a simple explicit algorithm. A special case of this algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monatshefte für Mathematik
سال: 2016
ISSN: 0026-9255,1436-5081
DOI: 10.1007/s00605-015-0860-2